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Fluctuation dissipation theorems and irreversible thermodynamics
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We investigate the statistics of fluctuations in macroscopic systems described by thermodynamics. We begin
by reviewing fluctuations in the context of linear irreversible thermodynamics and show that a more direct
characterization of the fluctuations is possible, if velocity fluctuations are explicitly included in the second
variation of the entropy,d2S, about the equilibrium state. A similar procedure is then applied to what is the
main goal of this paper: elucidating the nature of fluctuations in hyperbolic macroscopic systems, where signals
have a finite transmission velocity. We find that, once again, velocity fluctuations have to be explicitly in-
cluded, which takes us outside of extended irreversible thermodynamics as it is often defined. We find the
explicit form of the fluctuation-dissipation theorem in this case, and determine the statistics of the stochastic
variables in terms of the quantities appearing in the deterministic dynamics. The fluctuating theory is then
reformulated in order to elucidate the relationship between the extended theory and linear irreversible thermo-
dynamics. This has the effect of bringing out the general structure more clearly: the real, frequency-
independent transport coefficients of linear irreversible thermodynamics are replaced by their complex,
frequency-dependent counterparts in the extended theory.
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I. INTRODUCTION

The problem of the description of equilibrium and no
equilibrium fluctuations in macroscopic systems is one of
central aspects of both thermodynamic and microsco
theories of irreversible processes. This problem has b
studied by many researchers since the 1960’s@1#. From the
macroscopic viewpoint, the nonequilibrium case has b
investigated within the framework of several theories amo
which we mention in particular extended irreversible therm
dynamic theory@2#. The starting point of extended thermo
dynamics is the generalization of the Gibbs relation for
nonequilibrium entropy, which is used to determine the s
ond moments of the physical fields under the assumption
the probability of the fluctuations is given by the Einste
relation @3#. Much effort has also been expended within t
theory of stochastic processes to obtain the mesoscopic
of the macroscopic theories. The stochastic formulation,
ing back to Onsager and Machlup@4#, is based on stochasti
processes that are stationary, Gaussian and Markovian.
starting assumption is that the system is well described b
set of macroscopic variablesa(r ,t), a subset of which will
not be conserved, and that the state of the system is
defined at each position and time in terms of such se
properties. They are considered to take on continuous va
and vary continuously in space and time. The behavior
variablesab(r ,t), whereb labels the variables, is then ap
proximated by the Langevin-type equations

]ab~r ,t !

]t
52(

c
E dr 8Gbc~r ,r 8!ac~r 8,t !1 f̃ b~r ,t !, ~1!

where the first term on the right-hand side is a result of
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linearization of the macroscopic equation about the stati
ary state andf̃ b(r ,t) is a stochastic term that represents flu
tuations in the system.

Such a theory implies a general fluctuation dissipat
theorem~FDT!, which is valid even in systems without loca
equilibrium @5#. This theorem provides us with, in principle
a tool to determine the statistics off̃ b(r ,t). The statistical
properties of the physical fields arise from this fluctuati
stochastic term that is assumed to be Gaussian and Mar
ian ~white!. The FDT is valid even without any thermody
namics because it is a consequence of the Langevin dyn
ics alone. The phenomenological theory of fluctuatio
obtained from such a theorem is well posed in the sense
its extension to nonequilibrium states, arbitrarily far fro
equilibrium is immediately valid and no further physical a
guments are needed. However, the FDT simply relates
statistics of thef̃ b to quantities appearing in the macroscop
theory ~properties ofGbc), and thus a theory of nonequilib
rium thermodynamics is required to make use of the FDT
practice.

Our concern in this paper will be the phenomenologi
theory of fluctuations in nonequilibrium macroscopic sy
tems in which thermodynamic inertia plays an important d
namical role. The inclusion of thermodynamic inertia in t
description leads us into the domain of hyperbolic pheno
ena, i.e., a set of phenomena in which signals have a fi
transmission velocity. Examples of these are diffusive a
dissipative transport phenomena in viscoelastic fluids, s
ond sound in heat transmission, etc. Extended irrevers
thermodynamics~EIT! is the natural thermodynamic frame
work for these kind of phenomena@2#, and we shall show
that the approach used to determine the FDT in syste
without inertia can be extended to find the FDT in EIT.
©2001 The American Physical Society16-1
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The outline of the paper is as follows. We begin in Sec
with a derivation of the FDT and then go on in Sec. III
show how it can be used to specify the statistics of the
chastic term in linear irreversible thermodynamics~LIT !. We
begin by closely following the approach adopted by Fox a
Uhlenbeck@6# ~which is in essence that of Landau and L
shitz @7#!, but we will use a more direct method than th
did, which we will argue is less ambiguous. In Sec. IV w
carry over the same methods to EIT and find the resul
FDT. In Sec. V we will describe an alternative way of pr
senting the results of Sec. IV, which more closely resemb
the FDT in LIT. The stochastic terms are now, however,
longerd-function correlated, but exponentially correlated
time. An Appendix gives some technical details that we
omitted from the main part of the paper.

II. FLUCTUATION-DISSIPATION THEOREM AND
IRREVERSIBLE THERMODYNAMICS

In this section we will derive the FDT for equations of th
form ~1!. As we have stressed in Sec. I, the theorem follo
only from the form of the stochastic dynamics and so can
proved independently of any thermodynamic description t
we will later use.

In this paper we will frequently adopt an abbreviated fo
where the continuous labelsr ,r 8 are replaced by the discret
labelsj ,k for convenience and where the summation conv
tion is assumed. So, for instance, equations of the type~1!
are written in the form

ȧb
j ~ t !1Gbc

jk ac
k~ t !5 f̃ b

j ~ t !. ~2!

The stochastic termf̃ b
j (t) is taken to have a Gaussian dist

bution with mean zero and correlator

^ f̃ b
j ~ t ! f̃ c

k~ t8!&52Qbc
jk d~ t2t8!. ~3!

It is clear from Eq.~3! that the matrixQ, viewed in the
combined (j ,b) space, is real, symmetric, and positiv
semidefinite. The FDT constitutes the link between the s
chastic formalism discussed above and thermodynamics.
generality of this theorem is not widely appreciated; it
cludes hyperbolic phenomena in spatially extend
systems—which is of our interest here—and systems ou
local equilibrium, as has been remarked by Eyinket al. @5#.
As mentioned above, the only assumption required is that
variables are described by some generalized Langevin e
tion of the kind~2!. The variablesac

k(t) represent linear de
viations from the stationary state. Since, by Eq.~2!, they are
linearly related tof̃ b

j , which are Gaussian random variable
they are themselves Gaussian random variables. For an
system, that is one where the initial conditions were se
the infinitely distant past,̂ae

l &50 and the probability distri-
bution of thea is stationary:

PS~a!5N expH 2
1

2
ab

j Ebc
jk ac

kJ , ~4!
04611
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whereN is a normalization constant and where the subsc
S is a reminder that this is a time-independent probabi
density function. TheEbc

jk matrix is, for the moment, unde
termined, but we note that it follows from Eq.~4! that

^ae
l af

m&S5~E21!e f
lm . ~5!

Since the stochastic process defined by Eqs.~2! and ~3!
only depends onQab

i j andGab
i j , Eab

i j must be related to thes
two matrices. This relationship is the FD theorem. To det
mine it, we solve Eq.~2! and from the solution determine th
correlation function in the stationary state to be@8#

^ae
l ~0!af

m~0!&S52E
0

`

dr e2rGeb
l j

Qbc
jk e2rGf c

mk
. ~6!

Since the initial conditions were set in the infinitely dista
past, and thea’s are both evaluated att50, the correlation
function on the left-hand side of Eq.~6! is equal to the one
on the left-hand side of Eq.~5! and so equal to (E21)e f

lm .
Performing the integral in Eq.~6! gives the FD theorem

2Qab
i j 5Gac

ik ~E21!cb
k j 1~E21!ac

ik Gcb
Tk j , ~7!

whereT denotes transpose. We stress again that no cond
of time irreversibility or detailed balance was required
derive Eq.~7!; it is simply a consequence of the large tim
behavior of a system described by Eqs.~2! and ~3!.

III. FLUCTUATIONAL DYNAMICS FROM LINEAR
IRREVERSIBLE THERMODYNAMICS

In this section we will review the theory of hydrodynam
fluctuations in LIT. Our purpose is not only to provide a
introduction that serves as background to the correspon
theory in EIT, but also to clarify some points of confusio
concerning this problem that exist in the literature.

We begin from the well-known balance equations f
mass, linear momentum, and energy

r
Dv
Dt

5
]vm

]xm
, ~8!

r
Dvm

Dt
52

]Pmn

]xn
1rFm , ~9!

r
Du

Dt
52

]qm

]xm
2PmnVnm , ~10!

with the constitutive relations

t°mn522mV° mn , qm52l
]T

]xm
, t52z

]vm

]xm
. ~11!

We use the convention thatm,n51,2,3. In Eqs.~8!–~10!,
D/Dt is the material derivative,v is the volume per unit
mass,u is the internal energy per unit mass,qm is the heat
flux, r is the mass density,Fm the external body forces pe
6-2
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unit mass,vm the barycentric velocity,Vmn the symmetric
part of the gradient velocity, andPmn the pressure tensor tha
is written as

Pmn5~p1t!dmn1t°mn ,

p being the thermodynamic pressure andtmn the stress vis-
cous tensor. Repeated indices are summed and a circle o
tensor symbol indicates that it is traceless. In Eq.~11!

qm ,t°mn ,t represent the heat flux, the traceless stress ten
and its trace, respectively. In additionl, z, and m are the
thermal conductivity, the bulk viscosity, and the shear v
cosity, respectively.

We now wish to express the equations governing the fl
tuations about the equilibrium state in the Langevin form~2!
where the stochastic terms have a correlator of the form~3!.
The process therefore consists of two stages:

~i! A linearization of Eqs.~8!–~11! about the equilibrium
state in order to make contact with the Langevin equati
~2!.

~ii ! The use of an Einstein relation, for the probability
fluctuations about the equilibrium state, to determine the m
trix Ebc

jk by comparison with Eq.~4!. Use of the FDT~7! then
allows Qbc

jk to be determined.
The linearization about the equilibrium state defined

(v,vm ,T)5(v0 ,0,T0) has been clearly discussed by Fox a
Uhlenbeck@6#, and we will simply summarize the essenti
points here. We will denote volume and temperature fluct
tions by v1 and T1, respectively,v5v01v1 and T5T0
1T1, but will use the same notation for the velocity and t
velocity fluctuations, since no confusion should arise. T
result of this linearization gives

ȧb
j ~ t !1Gbc

jk ac
k~ t !50; b,c51, . . . ,5, ~12!

wherej andk represent the spatial degrees of freedom a
Sec. I. We will not give the explicit form for theGbc

jk here;
we will limit our discussion to giving the relationship be
tween the fluctuating quantitiesab

j (t) and the variables ap
pearing in Eqs.~8!–~11!. The set of variables$v,vm ,T% that
form LIT comprise five independent components. T
ab(r ,t) are simply scaled versions of these variables.

a152r0
3/2v1 , am115S r0

A D 1/2

~v1!m , a55S r0C

T0AD 1/2

T1 ,

~13!

whereA andC are quantities defined solely in terms of th
fluid in equilibrium.

A[S ]p

]r D
T

, C[S ]u

]TD
v

. ~14!

In this paper all partial derivatives with a subscript outside
the brackets, as in Eq.~14!, will denote equilibrium quanti-
ties with the subscript denoting the quantity that is kept fix
during the variation. We will also sometimes write (]xy)z for
(]y/]x)z .
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We now move on to the second stage by adding stocha
terms to the right-hand side of Eq.~12! to represent the ef-
fects of all of the other degrees of freedom in the fluid th
have been omitted in the description of the fluid given
Eqs. ~8!–~11!. To determineEbc

jk , Fox and Uhlenbeck pro-
ceeded indirectly: the Einstein relation

PS~a!;exp$d2S/2kB%, ~15!

when taken in conjunction with Eq.~4!, gives to quadratic
order

S~a!5Seq2
1

2
kBab

j Ebc
jk ac

k . ~16!

From this it follows that

dS

dt
52kBȧb

j Ebc
jk ac

k51kBab
j ~GTE!bc

jk ac
k , ~17!

where Eq.~12! has been used in the final step.
On the other hand, starting from thermodynamics and

balance equations they showed that

dS

dt
5kBab

j S A

kBT0
Sbc

jk Dac
k , ~18!

whereSbc
jk is the symmetric part of the matrixGbc

jk . Note that
this is a symmetry in the combined (j ,b) space as in Sec. I
i.e.,

Gbc
jk 5Sbc

jk 1Abc
jk , ~19!

where

Sbc
jk 5Scb

k j and Abc
jk 52Acb

k j . ~20!

Comparing Eqs.~17! and ~18! they then deduce that

Ebc
jk 5

A

kBT0
d jkdbc . ~21!

This method of arriving at Eq.~21! is, in our opinion,
rather indirect and requires additional assumptions@for ex-
ample, if we assume thatEbc

jk is proportional to the unit ma-
trix, then Eq. ~21! follows from Eqs. ~17! and ~18!#. We
would rather determineEbc

jk by direct comparison with the
thermodynamic expression ford2S, rather than withdS/dt.
This provides a direct determination ofEbc

jk , but it also clari-
fies some points of confusion surrounding the role of vel
ity in LIT.

Much of the early literature on LIT seemed not to direc
address the contribution of the velocity fluctuations tod2S.
For example, in the classic text by Callen@9# we find only
the following correlation functions

^u1
2&52

kB

M S ]u

]~1/T! D
P/T

, ~22!
6-3
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^u1v1&52
kB

M S ]v
]~1/T! D

P/T

, ~23!

^v1
2&52

kB

M S ]v
]~P/T! D

1/T

, ~24!

whereM is the total mass of the fluid. The Gaussian pro
ability function that gives rise to these correlations is eas
constructed by inverting the matrix that has Eqs.~22!–~24!
as its entries~c.f. ~4! and~5!!. This can be achieved by usin
the chain rule for partial derivatives that transforms betwe
the set of independent extensive variablesu andv and the set
of corresponding intensive variables 1/T andp/T. One finds,
restoring the spatial dependence tou1 andv1,

PS~v1 ,u1!;expH M

2kBV
@~]v$T

21p%!uv1
j v1

j

12~]v$T
21%!uv1

j u1
j 1~]u$T

21%!vu1
j u1

j #J ,

~25!

whereV is the total volume of the fluid. The expression~25!
is not in a form that is immediately useful to us, since t
independent variablesv and u are used instead ofv and T
used by Fox and Uhlenbeck. The transformation fro
$v1 ,u1% to $v1 ,T1% is given by Eq.~A3! in the Appendix.
Using the results~A6! and ~A7!, also from the Appendix,
one finds that

~]v$T
21p%!uv1

j v1
j 12~]v$T

21%!uv1
j u1

j 1~]u$T
21%!vu1

j u1
j

52
Ar0

2

T0
v1

j v1
j 2

C

T0
2

T1
j T1

j . ~26!

Substituting Eq.~26! into Eq. ~25!, and using the rescale
variables~13!, we obtain

PS~a!;expH A

2kBT0
@2a1

j a1
j 2a5

j a5
j #J , ~27!

whereA is given by Eq.~14!. Since,Ebc
jk can be read off by

comparing Eq.~27! with Eq. ~4!, we can determine theQbc
jk

by using the FD theorem~7!. However, there is a problem
with the relation ~27!—it does not depend onam11

j , the
velocity fluctuations. Therefore, althoughEbc

jk is diagonal,
some of the entries are zero and so it has no inverse. Co
quently,^ae

l af
m&, (e, f 52,3,4), is formally infinite.

This shows the necessity of including the velocity fluctu
tions in d2S. The need to do this was pointed out by Glan
dorff and Prigogine@10# and subsequently clarified by se
eral authors @11–14#, although it is still not widely
appreciated. Briefly, if the extensive variables areu and v
and the corresponding intensive variables are 1/T and p/T,
then from Eqs.~15! and ~25!

d2s5dud~1/T!1dvd~p/T!, ~28!
04611
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wheredu5u1 and dv5v1, and where as usual the use
lower cases implies that we are considering the entropy p
unit mass. Since theE matrix obtained using this startin
point is only 232, we need to include velocity fluctuation
to get the full matrix. In this case we should work with th
extensive variablesu, v, andvm and the corresponding in
tensive variables 1/T, p/T, and2vm /T. The expression~28!
for d2s should be replaced by

d2s5dud~1/T!1dvd~p/T!1dvmd~2vm /T!. ~29!

Since the velocity fluctuations are simply the velocity to th
order, we may write the last term, again to this order,
2vmvm /T0. Therefore, an extra term2Mvmvm/2kBT0 has
to be added on to the exponent in Eq.~25!. After rescaling
according to Eq.~13!, the factor2a1

j a1
j 2a5

j a5
j is replaced

by simply 2ab
j ab

j , and soEbc
jk is given by Eq.~21!, as re-

quired. However, identifyingEbc
jk directly throughd2s, rather

than indirectly throughds/dt, is more satisfactory since n
other assumptions about the form ofEbc

jk are required.
Substituting Eq.~21! into Eq. ~7! gives

Qbc
jk 5

kBT0

A
Sbc

jk . ~30!

For the purposes of comparison with our later results we g
the explicit form forSbc

jk as derived in Ref.@6#:

Sm11,n11~r ,r 8!5
1

r0
@2mXmrns1zdmrdns#

3
]2

]xr ]xs8
d~r2r 8!, ~31!

S55~r ,r 8!5
1

r0C
ldmn

]2

]xm ]xn8
d~r2r 8!, ~32!

with all otherSbc(r ,r 8), including S11(r ,r 8), equal to zero.
The tensorXmnrs is defined by

Xmnrs5
1

2 S dmrdns1dmsdnr2
2

3
dmndrsD . ~33!

In Eqs.~31! and ~32! the continuum limit has been taken s
that the discrete spatial variablesj ,k have been replaced byr
and r 8. Note the presence of spatial derivatives in Eqs.~31!
and~32!, and therefore through Eq.~30!, in Qbc(r ,r 8). These
can be eliminated if, instead of working with the stochas
terms f̃ m11(r ,t) and f̃ 5(r ,t), one introduces new quantitie
s̃mn and g̃m by @6#

f̃ m11~r ,t !5~r0A!21/2
]

]xn
s̃mn~r ,t !, ~34!

f̃ 5~r ,t !5~r0T0AC!21/2
]

]xm
g̃m~r ,t !. ~35!

From Eqs.~3!, ~30!, and the above definitions, one finds th
FDT in the form
6-4
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^s̃mn~r ,t !s̃rs~r 8,t8!&52kBT0@2mXmnrs1zdmndrs#

3d~r2r 8!d~ t2t8!, ~36!

^g̃m~r ,t !g̃n~r 8,t8!&52kBT0
2ldmnd~r2r 8!d~ t2t8!,

~37!

with all other contributions vanishing. In Sec. V we w
show how these results are generalized when hyperbolic
nomena are taken into account.

In this section we have investigated the Langevin desc
tion of a nonequilibrium fluid obtained by adding stochas
terms to the linearized hydrodynamic equations around
equilibrium state. Since this description is not obtain
through a coarse grained process the stochastic properti
the fluctuating terms represented by theQbc

i j matrix in Eq.~3!
must be determined by use of the FDT~7!. Also since the
stochastic termsf b(r ,t) are Gaussian with zero mean, the
are completely characterized by this matrix. The well-kno
relation~30! shows thatQbc is essentially the symmetric pa
of Gbc , which may be obtained from the linearized hydr
dynamics. In the next section we derive an analogous r
tion for EIT.

IV. FLUCTUATIONAL DYNAMICS FROM EXTENDED
IRREVERSIBLE THERMODYNAMICS

In this section we will consider phenomena in which t
frequency of the perturbations becomes comparable to
inverse of the relaxation times of the dissipative fluxes. W
also assume a finite velocity of transmission of signals in
system. It is well known that in such nonequilibrium cond
tions the dissipative fluxes are not uniquely determined
the spatial gradients of the hydrodynamic densities. One
to construct a thermodynamics for these kinds of nonequ
rium states is to change the usual thermodynamic role of
fluxes and to elevate them to the same status as the inde
dent slow variables of the system. This gives rise to EIT@2#.
The existence of a generalized nonequilibrium entropy
pending on the extended set of variables including the di
pative fluxes is assumed. By further assuming that this
tropy function is differentiable, it is possible to get a clos
set of dynamic equations made up of the well-known bala
equations for mass, linear momentum, and energy~8!–~10!,
and the constitutive equations for the new independent v
ables@2#, whose simplest form that allows us to deal wi
hyperbolic phenomena is

t2

]t°mn

]t
1t°mn522mV° mn , ~38!

t1

]qm

]t
1qm52l

]T

]xm
, ~39!

t0

]t

]t
1t52z

]vm

]xm
, ~40!

where thet i , i 50,1,2, are the relaxation times of the vario
fluxes.
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This way of proceeding, and the thermodynamics impl
by the hypothesis of the enlargement of the thermodyna
variables space, is understood as an extension of linear
versible thermodynamics to describe far from equilibriu
phenomena@15#. Its microscopic basis appears to be found
the kinetic theory of Boltzmann for a dilute monoatomic g
through the 13 moments method of solution given by G
@16#, in generalizations of the moments method@17# or in
information theory@18#. The model defined by Eqs.~38!–
~40!, has been used successfully in the study of hyperb
phenomena in viscoelastic fluids, heat conduction, diffusi
etc. @2#.

The linearization is carried out in exactly the same way
in Sec. II, except that here the equilibrium state is defined

(v,vm,T,t°mn ,qm ,t)5(v0,0,T0,0,0,0). As in the case of ve
locity in LIT, we will use the same notation for the extr
variables introduced in EIT and the fluctuations about the
since no confusion should arise. The result of this lineari
tion gives Eq.~12!, but with b,c51, . . .,14. The form of
Gbc

jk is given in the Appendix along with the details of th
derivation. Here we once again concentrate on the relat
ship between the fluctuating quantitiesab

j (t) and the vari-

ables appearing in Eqs.~8!–~10! and ~38!–~40!. Sincet°mn
has five independent components, it is clear that the se

variables$v,vm ,T,t°mn ,qm ,t% that form EIT—with the ad-
dition of velocity as an independent thermodynam
variable—comprise of 14 independent components. T
scaled versions of the first five of these variables are gi
by Eq. ~13!; the other nine are given by

a° mn5S t2

mAD 1/2

t°mn , am1105S t1

T0lAD 1/2

qm ,

a145S t0

zAD 1/2

t. ~41!

These scalings are chosen so that all theab have the same
dimension~of the square root of density!. The only slight
subtlety comes in the specification of the five independ

degrees of freedom corresponding toa° mn(r ,t). There is no
single, natural mapping on to$ab(r ,t)ub56, . . . ,10%. For
example one could takea6 , a7, anda8 to be the three off-

diagonal entriesa° mn with m,n, anda95a° 11,a105a° 22. For
most of what follows, this choice will not be of any cons

quence, and we will frequently write$a° mn% for $abub
56, . . . ,10%.

To determine the statistics of the fluctuations we use
of the central results of EIT, namely the probability of flu
tuations about the equilibrium state@2#

PS~v1 ,u1 ,t°mn ,qm ,t!;expH M

2kBV F ~]v$T
21p%!uv1

j v1
j

12~]v$T
21%!uv1

j u1
j

1~]u$T
21%!vu1

j u1
j 2

vt2

2mT0
t° mn

j t° nm
j

2
vt1

2
qm

j qm
j 2

vt0
t jt j G J . ~42!
lT0
zT0
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Substituting Eq.~26! into Eq. ~25!, and using the rescale
variables~13! and ~41!, we obtain

PS~a!;expH A

2kBT0
F2a1

j a1
j 2a5

j a5
j 2

1

2
a° mn

j a° nm
j

2am110
j am110

j 2a14
j a14

j G J . ~43!

The expression~43! suffers from the same problem as E
~27! did in LIT. The identification of anEbc

jk would lead to
inconsistencies because of the omission of the velocity te
in the expression ford2s. If we include them in the way
described in Sec. II, we find

PS~a!;expH A

2kBT0
@2ab

j ab
j #J . ~44!

Comparing Eq.~44! with Eq. ~4!, once again gives Eq.~21!.
The use of the fluctuation dissipation theorem~7! then gives
Eq. ~30!. From Eq.~A24! we see that, unlike LIT, theSbc

jk are
diagonal in the spatial variablesj ,k in EIT, so that Sbc

jk

[Sbcd jk→Sbcd(r2r 8) in the continuum limit. We can
therefore write Eq.~30!, with the spatial degrees of freedo
displayed explicitly as

Qbc~r ,r 8!5
kBT0

A
Sbcd~r2r 8!, ~45!

whenever the velocity is included in the thermodynam
variables space.

The vanishing of theQbc
jk matrix forb,c51, . . . ,5implies

that there is no stochastic term in the Eqs.~2! for b

51, . . . ,5: f̃ 1 , f̃ m11, and f̃ 5 vanish. The specific form of the
correlators of the stochastic terms for the other equati
may be obtained from Eqs.~3!, ~45!, and~A24!, and are

^ f°̃mn~r ,t ! f°̃rs~r 8,t8!&5
2kBT0

At2
Xmnrsd~r2r 8!d~ t2t8!,

^ f̃ m110~r ,t ! f̃ n110~r 8,t8!&5
2kBT0

At1
dmnd~r2r 8!d~ t2t8!,

^ f̃ 14~r ,t ! f̃ 14~r 8,t8!&5
2kBT0

At0
d~r2r 8!d~ t2t8!. ~46!

The correlators~46!, appear to present some problems,
that they diverge when one takes the Newtonian limitt i
→0. But this is an illusion: one has to expose thet i depen-
dence explicitly in the dynamical equation itself, and not ju
in the stochastic term, in order to understand this limit. W
will discuss this further in the next section, where we w
also show that by reformulating the prescription derived
this section, we can make direct contact with the fluctuat
dynamics of LIT discussed in Sec. III.
04611
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V. AN ALTERNATIVE FORMULATION

In the previous section, we deduced the FDT for hyp
bolic phenomena. The equations fora1 , am11, anda5, had

no stochastic terms whereas those fora° mn, am110, anda14
did; their two-point correlation functions are given by E
~46!. In this section, we will explore this structure in mo
detail and show that an alternative formulation exists,

which thea° mn, am110, anda14 are eliminated and thus, jus
as in LIT, only equations fora1 , am11, anda5 remain. Also,
again just as in LIT, the equations foram11 and a5 have
stochastic terms, but the equation fora1 does not. However,
unlike LIT, these stochastic terms are notd-function corre-
lated in time. In an attempt to make the demonstration
clear as possible, let us focus only on the pair of equati
for a5 and am110; a similar discussion holds for the se

am11 and$a° mn,a14%.
From Eq. ~A16! in the Appendix and the fact thatf̃ 5

vanishes, the equation fora5(r ,t) reads

]a5

]t
1Y1

]am11

]xm
1t1

21/2Y2

]am110

]xm
50, ~47!

and from Eq.~A18! the equation foram110(r ,t) reads

]am110

]t
1t1

21am11052t1
21/2Y2

]a5

]xm
1 f̃ m110. ~48!

HereY1 andY2 are twot i-independent constants given by

Y15
B

r0
S T0

C D 1/2

and Y25S l

r0CD 1/2

. ~49!

We can immediately integrate Eq.~48! to obtain

am110~r ,t !52t1
21/2Y2E

2`

t

dt8 exp$2~ t2t8!/t1%
]a5~r ,t8!

]xm

2S t1

lAT0
D 1/2

G̃m~r ,t !, ~50!

where the new stochastic quantity,G̃m , is defined by

G̃m~r ,t ![2S lAT0

t1
D 1/2E

2`

t

dt8 exp$2~ t2t8!/t1%

3 f̃ m110~r ,t8!. ~51!

In Eq. ~50! we have used limt→2`et/t1 am110(r ,t)50. That
is, the system is aged, and the initial condition has been
in the infinitely distant past.

We now, as indicated in the introduction to this sectio
eliminate am110 in Eq. ~47! by using Eq.~50!. Since the
combinationlt1

21 multiplied by the exponential function in
Eq. ~50! @and in Eq. ~51!# will keep on appearing, let us
define the function

l~ t ![H lt1
21 exp$2t/t1%, if t>0

0, if t,0.
~52!
6-6
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Then Eq.~47! becomes

]a5~r ,t !

]t
2

1

r0CE2`

`

dt8 l~ t2t8!
]2a5~r ,t8!

]xm ]xm
1Y1

]am11~r ,t !

]xm

5~r0T0AC!21/2
]G̃m~r ,t !

]xm
. ~53!

Let us first note the presence of the memory kernell(t
2t8). In the limit t1→0,l(t)→ld(t), and therefore the left-
hand side of Eq.~53! becomes

]a5

]t
2

l

r0C

]2a5

]xm ]xm
1Y1

]am11

]xm
, ~54!

in agreement with the results of Ref.@6#. For systems tha
obey the FDT, we would therefore expect that the stocha
term on the right-hand side of Eq.~53! is also notd-function
correlated, but has a temporal correlation related to the fu
tion l(t) @19,20#. To investigate this point further, we notic
that the stochastic term involves the derivative ofG̃m and so
it is very natural to make the analogous transformation to
~35! and to define

F̃5~r ,t !5~r0T0AC!21/2
]

]xm
G̃m~r ,t !, ~55!

so that the right-hand side of Eq.~53! is simplyF̃5. From Eq.
~51! it follows that sincef̃ m110 is Gaussianly distributed with
zero mean, thenG̃m is also Gaussianly distributed with zer
mean. Moreover, a short calculation using the second exp
sion in Eq.~46! yields

^G̃m~r ,t !G̃n~r 8,t8!&5
kBT0

2l

t1
dmn exp$2ut2t8u/t1%d~r2r 8!

5kBT0
2dmnl~ ut2t8u!d~r2r 8!. ~56!

This is exactly as we would expect on general grounds fo
theory that obeys a FDT. The correlation function of t
stochastic terms involves the same function as appears in
memory kernel, but with the argument of the function bei
the modulus of the argument of the memory kernel@19,20#.

Let us pause to summarize what has so far been dem
strated in this section. We have shown that there are
alternative formulations of the equation fora5 in the fluctu-
ating dynamics of EIT:

~a! A single equation~53! may be given. This equation
has a memory term and a stochastic term~55! that is expo-
nentially correlated in time and whose correlation function
given by Eq.~56!.

~b! Two Eqs.~47! and~48! may be given. These have n
memory term, and only one has a stochastic term tha
d-function correlated, with a correlation function that
given by the appropriate element ofQbc .

This situation is familiar in the theory of non-Markovia
stochastic processes@21#. In certain cases the non-Markovia
process may be made Markovian by extending the spac
variables. The case of exponentially-correlated noise is
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many ways the simplest generalization of thed-function~i.e.,
Markovian! case and this process can be made Markovian
enlarging the space froma5 to $a5 ,am110%. In this case, the
equation for the original variable has no stochastic term
the equation for the newly introduced variable does hav
stochastic term, which is now, however,d-function corre-
lated. Both formulations have their advantages; the sin
equation is useful in that the generalization from LIT
somewhat more obvious, whereas the two separate equa
are useful when one wishes to make use of the theory
Markovian processes. The fact that fluctuations in EIT
volve non-Markovian processes was noticed some time
@22#, although there has been some dispute over some o
statements that appear in this paper@23#. Our treatment dif-
fers in that we concentrate on the explicit formulas, a
stresses the role of the FDT.

We have already remarked on several occasions on
limit t1→0 of the single-equation formulation. At the end
Sec. IV we commented that the Markovian formulation a
peared to have some problems when this limit was taken
show that these problems are not real we need to recall
while a5 is a scaled version of the physical fieldT1 for which
the scaling does not involvet1 , am110 is a scaled version o
qm for which the scaling does involvet1. Therefore, while
all the t1 dependence in Eq.~53! is manifest, and we may
simply take the limit by considering the limit of th
l-function ~52!, in the two equations~47! and~48! we need
to make thet1 dependence explicit by defining new quan
ties:

am1105t1
1/2Am110, f̃ m1105t1

21/2j̃m110. ~57!

The first transformation is dictated by Eq.~41!: the field
Am110 has a finite limit ast1→0. The second transformatio
is dictated by Eq.~46!: the correlation function of the sto
chastic quantityj̃m110 also has a finite limit ast1→0. Mak-
ing the substitutions~57! in Eqs.~47! and ~48! gives

]a5

]t
1Y1

]am11

]xm
1Y2

]Am110

]xm
50 ~58!

and

t1

]Am110

]t
1Am11052Y2

]a5

]xm
1 j̃m110. ~59!

All the t1 dependence is now manifest. Taking thet1→0
limit in Eq. ~59! and substituting forAm110 in Eq. ~58! gives

]a5

]t
1Y1

]am11

]xm
2Y2

2 ]2a5

]xm ]xm
52Y2

]j̃m110

]xm
, ~60!

where

^j̃m110~r ,t !j̃n110~r 8,t8!&5
2kBT0

A
dmnd~r2r 8!d~ t2t8!.

~61!
6-7
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This is in agreement with Eq.~54!, which was obtained as
the limit t1→0 of the nonlocal equation~53!, and the sto-
chastic term of LIT defined by Eqs.~35! and ~37!.

Another interesting interpretation may be found by wr
ing Eq. ~53! in frequency space, that is, taking its Fouri
transform in the time variable. Doing this one finds

2 iva5~r ,v!2
l~v!

r0C

]2a5~r ,v!

]xm ]xm
1Y1

]am11~r ,v!

]xm

5F̃5~r ,v!. ~62!

Herel(v) is the Fourier transform of the functionl(t) de-
fined by Eq.~52!:

l~v!5E
2`

`

dt eivtl~ t !5
l

12 ivt1
. ~63!

Since

E
2`

`

dt eivtl~ utu!52 Rel~v!5
2l

11v2t1
2

, ~64!

we may write the correlation function~56! of theG̃m(r ,v) in
frequency space as

^G̃m~r ,v!G̃n* ~r 8,v!&52~2p!kBT0
2 ldmn

@11v2t1
2#

d~r2r 8!.

~65!

Notice that the structure in whichl(t) appears in the
memory kernel andl(utu) in the correlation function of the
stochastic term—a structure that follows from the FDT
Sec. IV—means that wherel appeared in the deterministi
part of the equations of LIT,l(v) now appears, and wherel
appeared in the correlation function of the stochastic term
LIT, Rel(v) now appears.

It is now straightforward to extend this procedure to t
equation foram11. By constructing an analogous set of a
guments to those described above, we find that the gene
zation of the LIT equation foram11 is simply found by re-
placing the transport coefficientsm andz by

m~v!5
m

12 ivt2
; z~v!5

z

12 ivt0
, ~66!

respectively. That is,

2 ivar11~r ,v!2
1

r0
$2m~v!Xrmsn1z~v!drmdsn%

3
]2as11~r ,v!

]xm ]xn
1A1/2

]a1~r ,v!

]xr
1Y1

]a5~r ,v!

]xr

5F̃r11~r ,v!. ~67!

The analogous equation to Eq.~34! is
04611
f

in
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F̃m11~r ,v!5~r0A!21/2
]

]xn
S̃mn~r ,v!, ~68!

with

^S̃mn~r ,v!S̃rs* ~r 8,v!&52~2p!kBT0$2 Rem~v!Xmnrs

1Rez~v!dmndrs%d~r2r 8!.

~69!

This agrees with@24# whent05t2.
Finally, from the Appendix we see that the equation f

a1 does not involve any of the variablesa° mn, am110, or a14.
Therefore, it takes the same form as in LIT:

]a1~r ,t !

]t
1A1/2

]am11~r ,t !

]xm
50. ~70!

VI. CONCLUSIONS

In this paper we have explored several aspects of fluc
tions in macroscopic systems where the thermodynamic
ertia is not negligible. We began by reviewing the situati
in LIT where the inertia is negligible, and showed how t
statistics of the fluctuations can be completely determined
features of the macroscopic theory. While we followed F
and Uhlenbeck@6# for the first part of the derivation, we
adopted a more direct approach than they did by using
Einstein formulaPS;expd2S/2kB , rather thandS/dt, to de-
termine Ebc

jk . This indirect determination of the matrixE,
which is a feature of the Fox-Uhlenbeck treatment, is som
what unsatisfactory, but does circumvent the question
whether velocity fluctuations should be included ind2S. For-
tunately, this issue has been clarified since the publicatio
the paper by Fox and Uhlenbeck, and a cleaner derivatio
the FDT in this case is now possible.

It is natural to try to extend these ideas to EIT: linearizi
the theory about the equilibrium state and adding fluctuati

to each of the equations forv,vm ,T,t°mn ,qm ,t. In order to be
able to use the Einstein formula to determineEbc

jk it is nec-
essary, as in the LIT case, to assume that velocity is a t
modynamic variable in the theory. It seems that this takes
outside EIT as usually defined@2#, although occasionally it
has been explicitly included@25#. In any case, we find it
difficult to understand how a consistent theory of fluctuatio
can be formulated unless velocity fluctuations are includ
For if they are not included, some of the diagonal entries
the E matrix are zero and so the inverse does not e
~within the linear theory! and the FDT~7! cannot be invoked.
When the velocity terms are included one finds that not o
does the equation fora1 have no stochastic term~which we
would expect, since it does not contain any dissipative c
stants!, but the equations foram11 anda5 have none either.
On the other hand, stochastic terms do appear in the e

tions for a° mn, am110, and a14, and these, unlike those i
LIT, have correlation functions that do not involve spat
derivatives of thed function.

This structure is reminiscent of Langevin equations wh
the noise is not white, but exponentially correlated. In the
cases it is possible to increase the number of variable
such a way that the equations for the original variables n
6-8
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have no noise, and those for the newly introduced variab
have noise terms that are white, i.e.,d-function correlated. In
the case of interest to us in this paper, fluctuating EIT co
sponds to generalizing fluctuating LIT by extending t
space of variables from the original five$a1 ,am11 ,a5% by

adding the extra nine comprising$a° mn,am110,a14% to make
14 in all. In this larger space the stochastic process tha
fluctuating EIT~including the velocity! is Markovian. In the
space of the original five variables it is, however, no
Markovian.

The introduction of new variables in a non-Markovia
stochastic process in order to render it Markovian, is ofte
very useful device, since the theory of Markovian proces
is usually so much easier. However, the non-Markovian r
resentation has some advantages, the principal one being
it is easier to interpret physically. In Sec. V we showed
stances of this in the present problem. For instance, in
temporal representation, the nature of thet i→0 limit was
much clearer than in the Markovian formulation. In the fr
quency representation, the picture was even clearer, with
real, frequency-independent transport coefficients of LIT
ing replaced by their complex, frequency-dependent coun
parts. Other than this, the deterministic parts of the equat
were unchanged. The corresponding change to the cor
tion function of the stochastic terms was a modificati
whereby the LIT transport coefficients were replaced by
real parts of the frequency-dependent ones.

We believe that the simple and intuitively appealing stru
ture of fluctuating EIT discussed here will prove useful in t
many future applications of the theory.
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APPENDIX

In this appendix we discuss the thermodynamic formu
required in order to prove some of the results that appea
the main text and we also linearize Eqs.~8!–~10! and ~38!–
~40! about the equilibrium state of the fluid they describe

We begin by recalling some results from the theory
classical equilibrium thermodynamics. These are requ
since both the governing equation~10! and the probability
distribution~25!, are given in terms of the internal energy p
unit mass,u(r ,t), and we wish to work with the temperatur
field T(r ,t), which has a more immediate physical interpr
tation. We begin from the relation~going over to the discrete
notation for the spatial variable!

u1
j 5S ]u

]v D
T

v1
j 1S ]u

]TD
v

T1
j , ~A1!
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where, following the notation established in the main part
the text, all partial derivatives with subscripts outside of t
brackets are evaluated in the equilibrium state. We now
the the standard thermodynamic relation

S ]u

]v D
T

5TS ]p

]TD
v

2p, ~A2!

in Eq. ~A1! and obtain

u1
j 5@BT02p0#v1

j 1CT1
j , ~A3!

where

B5S ]p

]TD
v

, ~A4!

andC is given by Eq.~14!.
We now list the other thermodynamic relations we ne

to use in derivations in the main text. First, to derive t
linearized form of Eq.~9! we use

S ]p

]xm
D5A S ]r

]xm
D1BS ]T

]xm
D , ~A5!

whereA is given by Eq.~14! andB by Eq. ~A4!.
To prove the relation~26!, we first use Eq.~A3!, and then

the two relations

S ]$T21%

]v D
u

1S ]$T21%

]u D
v

@BT02p0#50 ~A6!

and S ]p

]r D
u

5S ]p

]r D
T

1S ]T

]r D
u
S ]p

]TD
r

. ~A7!

We now move on to the derivation of the linearized equ
tions. Expanding about the equilibrium sta

(v,vm ,T,t°mn,qm ,t)5(v0 ,0,T0 ,0,0,0), and denoting vol-
ume and temperature fluctuations byv1 andT1, respectively,
we obtain

r0

]v1

]t
5

]~v1!m

]xm
, ~A8!

r0

]~v1!m

]t
2r0

2A
]v1

]xm
1B

]T1

]xm
52

]

]xn
~tdmn1t°mn!,

~A9!

r0C
]T1

]t
1T0B

]~v1!m

]xm
52

]qm

]xm
, ~A10!

t2

]t°mn

]t
1t°mn522mXmnrs

]~v1!r

]xs
, ~A11!

t1

]qm

]t
1qm52l

]T1

]xm
, ~A12!
6-9
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t0

]t

]t
1t52z

]~v1!m

]xm
. ~A13!

We now rewrite the linearized equations~A8!–~A13! in
terms of the new physical fields~13! and ~41!. We find

] ta11~A!1/2]mam1150, ~A14!

] tam111~A!1/2]ma11
B

r0
S T0

C D 1/2

]ma51S m

r0t2
D 1/2

]na° mn

1S z

r0t0
D 1/2

]ma1450, ~A15!

] ta51
B

r0
S T0

C D 1/2

]mam111S l

t1r0CD 1/2

]mam11050,

~A16!

] ta
°

mn1t2
21a° mn12S m

r0t2
D 1/2

Xmnrs]ras1150,

~A17!

] tam1101t1
21am1101S l

t1r0CD 1/2

]ma550, ~A18!

] ta141t0
21a141S z

t0r0
D 1/2

]mam1150, ~A19!

where with obvious notation]m means]/]xm and] t means
]/]t.

In order to make contact with the Langevin form~2!, we
need to make the spatial dependence more explicit. Th
fore, we wish to write Eq.~A14!, for example, in the form

]a1~r ,t !

]t
1E dr 8G1b~r ,r 8!ab~r 8,t !50, b51, . . .,14.

~A20!

Comparison with Eq.~A14! shows that the onlyG1b(r ,r 8)
that are nonzero are those withb52,3,4. In this case

G1(m11)~r ,r 8!5~A!1/2]md~r2r 8!. ~A21!
.

04611
e-

In a similar way we can determine all of the otherGbc(r ,r 8).
From Eqs.~A14!–~A19!, it is immediately apparent that

Gbc~r ,r 8!5Gcb~r ,r 8!, ~A22!

or in the discrete form introduced in Sec. I,Gbc
jk 5Gcb

jk . In
fact, in terms of the symmetric and antisymmetric forms d
fined by Eqs.~19! and ~20!, we further note thatAbc

jk 5Acb
jk

andSbc
jk 5Scb

jk . In continuous notation this reads

Abc~r ,r 8!5Acb~r ,r 8!; Sbc~r ,r 8!5Scb~r ,r 8!.
~A23!

Therefore, we need to only list theAbc for b,c and theSbc
for b<c; Eq. ~A23! gives the others once these are know
Notice also that Eqs.~20! and ~A23! taken together mean
thatAbc(r ,r 8) andSbc(r ,r 8) are antisymmetric and symme
ric, respectively, under the interchanger↔r 8.

The explicit forms are as follows. The only nonzeroSbc
are

S° mn,rs~r ,r 8!5t2
21Xmnrsd~r2r 8!,

S(m110)(n110)~r ,r 8!5t1
21dmnd~r2r 8!,

S1414~r ,r 8!5t0
21d~r2r 8!. ~A24!

The only nonzeroAbc with b,c are

A1(m11)~r ,r 8!5A1/2
]

]xm
d~r2r 8!,

A(m11)5~r ,r 8!5
B

r0
S T0

C D 1/2 ]

]xm
d~r2r 8!,

A(r11),mn~r ,r 8!5S m

r0t2
D 1/2

Xmnrs

]

]xs
d~r2r 8!,

A(m11)14~r ,r 8!5S z

r0t0
D 1/2 ]

]xm
d~r2r 8!,

A5(m110)~r ,r 8!5S l

t1r0CD 1/2 ]

]xm
d~r2r 8!. ~A25!
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