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We investigate the statistics of fluctuations in macroscopic systems described by thermodynamics. We begin
by reviewing fluctuations in the context of linear irreversible thermodynamics and show that a more direct
characterization of the fluctuations is possible, if velocity fluctuations are explicitly included in the second
variation of the entropy$?S, about the equilibrium state. A similar procedure is then applied to what is the
main goal of this paper: elucidating the nature of fluctuations in hyperbolic macroscopic systems, where signals
have a finite transmission velocity. We find that, once again, velocity fluctuations have to be explicitly in-
cluded, which takes us outside of extended irreversible thermodynamics as it is often defined. We find the
explicit form of the fluctuation-dissipation theorem in this case, and determine the statistics of the stochastic
variables in terms of the quantities appearing in the deterministic dynamics. The fluctuating theory is then
reformulated in order to elucidate the relationship between the extended theory and linear irreversible thermo-
dynamics. This has the effect of bringing out the general structure more clearly: the real, frequency-
independent transport coefficients of linear irreversible thermodynamics are replaced by their complex,
frequency-dependent counterparts in the extended theory.
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I. INTRODUCTION linearization of the macroscopic equation about the station-

ary state and,(r,t) is a stochastic term that represents fluc-

The problem of the description of equilibrium and non- tuations in the system.
equilibrium fluctuations in macroscopic systems is one of the Such a theory implies a general fluctuation dissipation
central aspects of both thermodynamic and microscopitheorem(FDT), which is valid even in systems without local
theories of irreversible processes. This problem has beeequilibrium[5]. This theorem provides us with, in principle,
studied by many researchers since the 1960]sFrom the  a tool to determine the statistics &f(r,t). The statistical
macroscopic viewpoint, the nonequilibrium case has beeproperties of the physical fields arise from this fluctuating
investigated within the framework of several theories amongstochastic term that is assumed to be Gaussian and Markov-
which we mention in particular extended irreversible thermo-ian (white). The FDT is valid even without any thermody-
dynamic theory[2]. The starting point of extended thermo- namics because it is a consequence of the Langevin dynam-
dynamics is the generalization of the Gibbs relation for theics alone. The phenomenological theory of fluctuations
nonequilibrium entropy, which is used to determine the secebtained from such a theorem is well posed in the sense that
ond moments of the physical fields under the assumption thats extension to nonequilibrium states, arbitrarily far from
the probability of the fluctuations is given by the Einstein equilibrium is immediately valid and no further physical ar-
relation[3]. Much effort has also been expended within theguments are needed. However, the FDT simply relates the
theory of stochastic processes to obtain the mesoscopic basjatistics of the, to quantities appearing in the macroscopic
of the macroscopic theories. The stochastic formulation, dattheory(properties 0fG,.), and thus a theory of nonequilib-
ing back to Onsager and Machl{], is based on stochastic rjum thermodynamics is required to make use of the FDT in
processes that are stationary, Gaussian and Markovian. T'?f?actice.
starting assumption is that the system is well described by @ oyr concern in this paper will be the phenomenological
set of macroscopic variableg(r,t), a subset of which will - theory of fluctuations in nonequilibrium macroscopic sys-
not be conserved, and that the state of the system is welems in which thermodynamic inertia plays an important dy-
defined at each position and time in terms of such set ohamical role. The inclusion of thermodynamic inertia in the
properties. They are considered to take on continuous Vam%ﬁescription leads us into the domain of hyperbolic phenom-
and vary continuously in space and time. The behavior ogng, i.e., a set of phenomena in which signals have a finite
variablesay(r,t), whereb labels the variables, is then ap- transmission velocity. Examples of these are diffusive and
proximated by the Langevin-type equations dissipative transport phenomena in viscoelastic fluids, sec-
san(r 1) ond sound in heat transmission, etc. Extended irreversible

p\".t) / / / =z thermodynamicgEIT) is the natural thermodynamic frame-

a g f dr'Goc(rurac(r, 0 +fo(r.t), (1 work forythese kind of phenomeri2], and W)é shall show

that the approach used to determine the FDT in systems

where the first term on the right-hand side is a result of thevithout inertia can be extended to find the FDT in EIT.
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The outline of the paper is as follows. We begin in Sec. llwhere'is a normalization constant and where the subscript
with a derivation of the FDT and then go on in Sec. Ill to Sis a reminder that this is a time-independent probability
show how it can be used to specify the statistics of the stoeensity function. TheEX, matrix is, for the moment, unde-
chastic term in linear irreversible thermodynamickl ). We  termined, but we note that it follows from E¢d) that
begin by closely following the approach adopted by Fox and
Uhlenbeck|6] (which is in essence that of Landau and Lif- (alaMs=(E~HIm, (5)
shitz [7]), but we will use a more direct method than they
did, which we will argue is less ambiguous. In Sec. IV we Since the stochastic process defined by Egsand (3)
carry over the same methods to EIT and find the resultingnly depends o®}, andGZ,, EJ, must be related to these
FDT. In Sec. V we will describe an alternative way of pre-two matrices. This relationship is the FD theorem. To deter-
senting the results of Sec. IV, which more closely resemblesnine it, we solve Eq(2) and from the solution determine the
the FDT in LIT. The stochastic terms are now, however, nocorrelation function in the stationary state to [i8g
longer s-function correlated, but exponentially correlated in

time. An Appendix gives some technical details that were | m o Gl i mk
. : = - jKa=pG
omitted from the main part of the paper. (ae(0)a5'(0))s=2 0 dp e "PeQpe e, (6)
II. ELUCTUATION-DISSIPATION THEOREM AND Since the initial conditions were set in the infinitely distant
IRREVERSIBLE THERMODYNAMICS past, and the’s are both evaluated at=0, the correlation

) ) _ ) _ function on the left-hand side of E¢p) is equal to the one
In this section we will derive the FDT for equations of the 5, the left-hand side of Eq5) and so equal toE %)M,

form (1). As we have stressed in Sec. |, the theorem f°”°W§3erforming the integral in EG6) gives the FD theorem
only from the form of the stochastic dynamics and so can be

proved independently of any thermodynamic description that 2QU =GK(E-1HK 4 (E- 1)Kk GTkKI 7)
we will later use. ab™ Tac cb aceb

In this paper we will frequently adopt an abbreviated formyyhereT denotes transpose. We stress again that no condition
where the continuous labelsr’ are replaced by the discrete of time irreversibility or detailed balance was required to

are written in the form

o = IIl. FLUCTUATIONAL DYNAMICS FROM LINEAR
ah(t)+Gheas(t) =fh(t). 2 IRREVERSIBLE THERMODYNAMICS

In this section we will review the theory of hydrodynamic
ctuations in LIT. Our purpose is not only to provide an
introduction that serves as background to the corresponding
o , theory in EIT, but also to clarify some points of confusion
LTt ))y=2QKst—t"). (3)  concerning this problem that exist in the literature.

We begin from the well-known balance equations for
It is clear from Eq.(3) that the matrixQ, viewed in the ~Mass, linear momentum, and energy
combined {,b) space, is real, symmetric, and positive

The stochastic terrﬁL(t) is taken to have a Gaussian distri- flu
bution with mean zero and correlator

semidefinite. The FDT constitutes the link between the sto- &: Wy ®)
chastic formalism discussed above and thermodynamics. The P bt ax,’

generality of this theorem is not widely appreciated; it in-

cludes hyperbolic phenomena in spatially extended Dv, P,

systems—uwhich is of our interest here—and systems out of Pt = Tox +pF,., €)
local equilibrium, as has been remarked by Eyailal. [5]. .

As mentioned above, the only assumption required is that the Du iq

variables are described by some generalized Langevin equa- —=——t_p v (10)

tion of the kind(2). The variablesa'é(t) represent linear de-
viations from the stationary state. Since, by E?), they are
linearly related tof} , which are Gaussian random variables,
they are themselves Gaussian random variables. For an aged . JT Jv
system, that is one where the initial conditions were set in Tur= "2V, Q.= _)\W’ T= —{#. (11
the infinitely distant pastal)=0 and the probability distri- " “
bution of thea is stationary:

with the constitutive relations

We use the convention that,»=1,2,3. In Eqs.(8)—(10),
D/Dt is the material derivativey is the volume per unit

_ T imjkak mass,u is the internal energy per unit mass, is the heat
Ps(@) J\/'exp{ ZabEbCaC]’ @ flux, p is the mass density;, the external body forces per
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unit mass,,, the barycentric velocityV,, the symmetric We now move on to the second stage by adding stochastic
part of the gradient velocity, arfd,,, the pressure tensor that terms to the right-hand side of E(L2) to represent the ef-
is written as fects of all of the other degrees of freedom in the fluid that
have been omitted in the descrlptlon of the fluid given by
P.,=(p+7) 5MV+‘;W, Egs. (8)—-(11). To determmeEbC, Fox and Uhlenbeck pro-

ceeded indirectly: the Einstein relation
p being the thermodynamic pressure ang the stress vis- 5
cous tensor. Repeated indices are summed and a circle over a Ps(a)~exp 6°S/2Kkg}, (15

tensor symbol indicates that it is traceless. In Efl)
o when taken in conjunction with Ed4), gives to quadratic
d.,Tuv,7 represent the heat flux, the traceless stress tensog, o,

and its trace, respectively. In addition ¢, and u are the
thermal conductivity, the bulk viscosity, and the shear vis- 1
cosity, respectively. S(a) = Seq— kBa Ej¥aX. (16)

We now wish to express the equations governing the fluc-
tuations about the equilibrium state in the Langevin f@&n
where the stochastic terms have a correlator of the f@m
The process therefore consists of two stages: ds

(i) A linearization of Eqs(8)—(11) about the equilibrium — = —kgalElfak= +kgal(GTE)Kak, (17)
state in order to make contact with the Langevin equations dt
(2).

(ii) The use of an Einstein relation, for the probability o
fluctuations about the equilibrium state, to determine the maE)
trix E by comparison with Eq4). Use of the FDT(7) then a
aIIost to be determined. ds A

The Iinearization about the equilibrium state defined by d_:kBan(_Sch a'é
(v,v,,T)=(v0,0,To) has been clearly discussed by Fox and t ks To
Uhlenbeck[6], and we will simply summarize the essential
points here. We will denote volume and temperature fluctua*
tions by v, and T;, respectively,v=vy+v, and T=T,

+ T4, but will use the same notation for the velocity and thel-€
velocity fluctuations, since no confusion should arise. The ik _ ok L Alk
result of this linearization gives Ghe=She+ Abe (19)

From this it follows that

¢ where Eq.(12) has been used in the final step.
On the other hand, starting from thermodynamics and the
lance equations they showed that

(18

whereSlX is the symmetric part of the matriz[¥.. Note that
this is a symmetry in the combinedl,b) space as in Sec. I,

al(h+GKakt)=0; bec=1,...,5 (12 Where

wherej andk represent the spatial degrees of freedom as in S{)kcz Sglb and AJkC: _Alé]b' (20
Sec. I. We will not give the explicit form for thG . here;
we will limit our discussion to giving the relatlonshlp be-
tween the fluctuating quantities,(t) and the variables ap- _ A
pearing in Eqs(8)—(11). The set of variablefv,v,,, T} that E{J"C k T Ok Opc- (21
form LIT comprise five independent components. The

a,(r,t) are simply scaled versions of these variables.

Comparing Egs(17) and(18) they then deduce that

This method of arriving at Eq(21) is, in our opinion,

112 rather indirect and requlres additional assumptiffos ex-
T, ample, if we assume thﬁ . is proportional to the unit ma-

(13) trix, then Eq.(21) follows from Egs.(17) and (18)]. We
would rather determmE . by direct comparison with the

whereA and C are quantities defined solely in terms of the thérmodynamic expressmn f@S, rather than withdS/dt.

poc
ToA

112
_ 3 _[Po _
1= —pg V1, Qu1~= A (v)u, as=

fluid in equilibrium. This provides a direct determination BfS, but it also clari-
fies some points of confusion surrounding the role of veloc-
U’)p Ju Ity in LIT.
A= (0—) : (aT) (14 Much of the early literature on LIT seemed not to directly
Plr address the contribution of the velocity fluctuationsst.

For example, in the classic text by Callg®] we find only

In this paper all partial derivatives with a subscript outside of the following correlation functions

the brackets, as in Eq14), will denote equilibrium quanti-

ties with the subscript denoting the quantity that is kept fixed au
during the variation. We will also sometimes writ@y), for (u 1> s ( 1T ) (22
(ayl9x), . J(1/T)
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_ kB ( dv )
<U1U 1>_ (}’( 1/1—) P/T (23)
B Ju
<Ul>_ (a(P/T) (24)

whereM is the total mass of the fluid. The Gaussian prob-
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where Su=u; and év=v,, and where as usual the use of
lower cases implies that we are considering the entropy per
unit mass. Since th& matrix obtained using this starting
point is only 2x2, we need to include velocity fluctuations
to get the full matrix. In this case we should work with the
extensive variables, v, andv, and the corresponding in-
tensive variables T/, p/T, and—v ,/T. The expressiof28)
-for 6%s should be replaced by

ability function that gives rise to these correlations is easily

constructed by inverting the matrix that has E(&2)—(24)

as its entriegc.f. (4) and(5)). This can be achieved by using
the chain rule for partial derivatives that transforms between
the set of independent extensive variahlesdv and the set
of corresponding intensive variablesTldndp/T. One finds,
restoring the spatial dependenceutpanduv,

M o
PS(Ulvul)Nexqm[(év{Tlp})uvllvjl

+2(3 (T il + (@ {T P, ului]r,
(25)

whereV is the total volume of the fluid. The expressi(2b)

8%5=SUS(LIT)+ v S(pIT)+ 8v,,8(—v,IT). (29

Since the velocity fluctuations are simply the velocity to this

order we may write the last term, again to this order, as
—v,v,/To. Therefore, an extra termMv v ,/2kgT, has

to be added on to the exponent in Eg5). .Af.ter rescaling

according to Eq(13) the factor—a a) —alal is replaced

by simply —ay, lal , and soE . Is given by Eq.(21), as re-

quired. However, |dent|fy|n@bc directly throughé?s, rather

than indirectly throughds/dt, is more satisfactory since no

other assumptions about the formBf are required.
Substituting Eq(21) into Eq. (7) gives

jk kBTO

S (30)

is not in a form that is immediately useful to us, since thepor the purposes of comparison with our later results we give

independent variables andu are used instead af and T

the explicit form forSDC as derived in Ref[6]:

used by Fox and Uhlenbeck. The transformation from

{vq,uq} to {v,,T4} is given by Eq.(A3) in the Appendix.
Using the result§A6) and (A7), also from the Appendix,
one finds that

(04T pH ol +2(0,{T" ) wlul + (44T 1), ulu]
(26)

Substituting Eq.(26) into Eq. (25), and using the rescaled
variables(13), we obtain

A . :
aTs [—ajal—alal]f, (27)

Ps(a)~exp[
whereA is given by Eq.(14). Since, E ¢ can be read off by
comparing Eq(27) with Eq. (4), we can determine th@
by using the FD theorent7). However, there is a problem
with the relation(27)—it does not depend oal w+1 the
velocity fluctuations. Therefore, althougfr{)k is dragonal

1
S,u,+ l,V+1(r’r,): %[ZMXM;WO’JF gé,brp&mr]
(92
X S(r=r’), (31
X, X
1 2
r,r'y=——=NG5,, S(r—r'), 32)
R v A ULE
with all other Sy(r,r"), including S;4(r,r’), equal to zero.
The tensoiX,,,,, is defined by
1 2
XWW:E 8upOvot 0,60,,— 35W5W (33

In Egs.(31) and(32) the continuum limit has been taken so
that the discrete spatial variablg& have been replaced by
andr’. Note the presence of spatial derivatives in E§4)
and(32), and therefore through E¢B0), in Q,(r,r"). These
can be eliminated if, instead of working with the stochastic

some of the entries are zero and so it has no inverse. COHS@fmeM+1(r t) andfs(r,t), one introduces new quantities

quently, <a af"), (e,f=2,3,4), is formally infinite.

This shows the necessity of including the velocity fluctua-
tions in 6°S. The need to do this was pointed out by Glans-

dorff and Prigoging10] and subsequently clarified by sev-
eral authors[11-14, although it is still not widely
appreciated. Briefly, if the extensive variables arand v
and the corresponding intensive variables afe dnd p/T,
then from Eqs(15) and(25)

5%s=6ud(1LIT)+ 6v 8(plT), (29

Suv andg g, by [6]

~ d ~
fﬂ+l(r!t):(pOA)illzaXVS/u/(r!t)l (34)

~ Jd ~
fs(f,t):(POTOAC)illzﬁgM(f,t)- (39
m

From Egs.(3), (30), and the above definitions, one finds the
FDT in the form
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P < VI This way of proceeding, and the thermodynamics implied
(Sual10Spo(1, 1)) = 2KaTol 21X s+ £ 0415y by the hypothesis of the enlargement of the thermodynamic
X8(r=r")s(t—t"), (36)  variables space, is understood as an extension of linear irre-

versible thermodynamics to describe far from equilibrium

@M(r,t)ﬁy(r’ 1)) =2KkgT2\ 8,,8(r—r")(t—t'), phenomen#l5]. Its microscopic basis appears to be found in

(37) the kinetic theory of Boltzmann for a dilute monoatomic gas
through the 13 moments method of solution given by Grad
with all other contributions vanishing. In Sec. V we will [16], in generalizations of the moments methidd] or in
show how these results are generalized when hyperbolic phéformation theory[18]. The model defined by Eq$38)—
nomena are taken into account. (40), has been used successfully in the study of hyperbolic
In this section we have investigated the Langevin descripPhenomena in viscoelastic fluids, heat conduction, diffusion,
tion of a nonequilibrium fluid obtained by adding stochastic®tc-[2]. o , )
terms to the linearized hydrodynamic equations around the | N€ linearization is carried out in exactly the same way as
equilibrium state. Since this description is not obtained"” Sec. ”; except that here the equilibrium state is defined by
through a coarse grained process the stochastic properties (of,_v,L,T,TW,qM,T)é(vo,O,To,O,O,O). As in_the case of ve-
the fluctuating terms represented by @ matrix in Eq.(3) Iom_ty in L_IT, we W|Il_use the same notation for the extra
must be determined by use of the FI®). Also since the Variables introduced in EIT and the fluctuations about them,
stochastic terms,(r,t) are Gaussian with zero mean, they Sincé no confusion should arise. The result of this lineariza-
are completely characterized by this matrix. The Well-knownt'c}lil gives Eq.(12), but with b,c=1,...,14. The form of
relation(30) shows thaQ, is essentially the symmetric part Cbc i given in the Appendix along with the details of the
of G, which may be obtained from the linearized hydro- derivation. Here we once again concentrate on the relation-
dynamics. In the next section we derive an analogous relaShiP between the fluctuating quantitiaf(t) and the vari-

tion for EIT. ables appearing in Eq$8)—(10) and (38)—(40). SinceorM,,
has five independent components, it is clear that the set of
IV. FLUCTUATIONAL DYNAMICS FROM EXTENDED variables{v,vﬂ 'T';Mv’qu} that form EIT—with the ad-
IRREVERSIBLE THERMODYNAMICS dition of velocity as an independent thermodynamic

variable—comprise of 14 independent components. The

In this section we wil cqnsider phenomena in which thegqo 04 versions of the first five of these variables are given
frequency of the perturbations becomes comparable to thgy Eq. (13); the other nine are given by

inverse of the relaxation times of the dissipative fluxes. We
also assume a finite velocity of transmission of signals in the ° 5 | Y% Y2
system. It is well known that in such nonequilibrium condi- ur= ﬁ prr  8u+10= m W
tions the dissipative fluxes are not uniquely determined by

the spatial gradients of the hydrodynamic densities. One way

to construct a thermodynamics for these kinds of nonequilib- a14=
rium states is to change the usual thermodynamic role of the

fluxes and to elevate them to the same status as the indepehese scalings are chosen so that all dgehave the same
dent slow variables of the system. This gives rise to [T dimension(of the square root of densityThe only slight
The existence of a generalized nonequilibrium entropy desubtlety comes in the specmcatlonoof the five independent
pending on the extended set of variables including the dissidegrees of freedom correspondingag,(r,t). There is no
pative fluxes is assumed. By further assuming that this ensingle, natural mapping on tfa,(r,t)|b=6,...,1Q. For
tropy function is differentiable, it is possible to get a closedexample one could takag, a;, andag to be the three off-
set of dynamic equations made up of the well-known balancgjiagonal entries,,, with 1< v, andag=2,1,a;0=as,. FOr
equations for mass, linear momentum, and ené8)¥(10),  most of what follows, this choice will not be of any conse-
and the constitutive equations for the new independent vari- . .o
ables[2], whose simplest form that allows us to deal with quence, and we will frequently writda,,} for {a|b

. . =6,...,10.
hyperbolic phenomena is To determine the statistics of the fluctuations we use one

of the central results of EIT, namely the probability of fluc-

o 12
a) T. (41)

o
T,y

° ° tuations about the equilibrium st
Ty 7= =20V, (39) q ]
o M o
-1
&q,u JT PS(ULULTWaqu)NexF{m (av{T p})uv!lvjl
717+q'“:_)\57' (39)
» +2(9,{T" P wiu}
aT v,
S T 40 1 jj_UTzoJ-oj
e X,y 40 Tl DU =5 2T T b
where ther;, i=0,1,2, are the relaxation times of the various o7y .
fluxes. gl -2 (42)
AT LT
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Substituting Eq.(26) into Eq. (25), and using the rescaled
variables(13) and(41), we obtain

10- O :
Zal al

_alal —alal
a;a;—asas 2 8By

The expressiof43) suffers from the same problem as Eq.
(27) did in LIT. The identification of arElX would lead to

Pg(a)~ expl’ 2KaT

_ Al j _al 4l
A, 1108+ 10 Q14214 (43

inconsistencies because of the omission of the velocity term

in the expression fow?s. If we include them in the way
described in Sec. I, we find

A o
TR [— a‘ba'b]] ) (44

Comparing Eq(44) with Eq. (4), once again gives Eq21).
The use of the fluctuation dissipation theorémthen gives
Eq. (30). From Eq.(A24) we see that, unlike LIT, thS‘bkc are
diagonal in the spatial variablegk in EIT, so thatS{)"C
=S5,c0jk—Spcd(r—r') in the continuum limit. We can
therefore write Eq(30), with the spatial degrees of freedom
displayed explicitly as

Ps(a)~exp[

kgTo ,
A Sbcé(r -r )1

ch(rar’): (45)

whenever the velocity is included in the thermodynamic

variables space.

The vanishing of th@!X matrix forb,c=1, . .. ,5implies
that there is no stochastic term in the Ed®) for b
=1,...,5:f;, T4, andfs vanish. The specific form of the

correlators of the stochastic terms for the other equations

may be obtained from Eq$3), (45), and(A24), and are

2kgT
B OX
ATZ

<f,u,11(rvt)fpu’(r,rt,)>: MVpUé(r_r,)g(t_t,)a

ATl

(Furadr,OF oo V)= 8,,8(r—1")8(t—t"),

2kgT
ATO

Frar OF (r' 1)) =" 8(r— 1) 8(t—t').  (46)

The correlators(46), appear to present some problems, in

that they diverge when one takes the Newtonian limit
—0. But this is an illusion: one has to expose thalepen-

dence explicitly in the dynamical equation itself, and not justCompination\ 7,

PHYSICAL REVIEW E64 046116

V. AN ALTERNATIVE FORMULATION

In the previous section, we deduced the FDT for hyper-
bolic phenomena. The equations fy, a, ., andas, had

no stochastic terms whereas those 3%, a,+10, andayy

did; their two-point correlation functions are given by Eg.
(46). In this section, we will explore this structure in more
detail and show that an alternative formulation exists, in

which theéw, a,+10, anda,, are eliminated and thus, just
as in LIT, only equations foa;, a, 1, andas remain. Also,
again just as in LIT, the equations far,,, and as have
gtochastic terms, but the equation fordoes not. However,
unlike LIT, these stochastic terms are nfunction corre-
lated in time. In an attempt to make the demonstration as
clear as possible, let us focus only on the pair of equations
for a5 and a,,9; a similar discussion holds for the sets

a,+1 and{a,,,a4f. 5
From Eqg.(Al16) in the Appendix and the fact thdt;
vanishes, the equation fer(r,t) reads

fas

79 (7ap,+1
ot

(7a,u+10_
1 =
X,

X,y

Yo 0. “7

and from Eq.(A18) the equation fol,, , ,¢(r,t) reads

(7a/.l,+ 10
ot

-1 _
Ty Qu+10— T 71

dag ~
1/2 5
Y2E+f#+10. (48)

HereY, andY, are twor;-independent constants given by

B TO 1/2 A 1/2
Yi=—|= and Yz—). 49
' Po C) 2 (POC “9
We can immediately integrate E(8) to obtain
t dag(r,t’
8,101t =— 712, f dt’ exp— (t—t')/ry) o)
e X,
1 l/2~
—(m G(r,t), (50
where the new stochastic quantifyp, is defined by
~ NAT,\ V2t
Gu(rit)y=— . f dt’ exp{—(t—t")/7q}
1 — 0
XT ,p10(r,t). (51)

In Eq. (50) we have used lim, _,.e"™ a,+10(r,t)=0. That
is, the system is aged, and the initial condition has been set
in the infinitely distant past.

We now, as indicated in the introduction to this section,
eliminate a, , 1 in Eq. (47) by using Eq.(50). Since the
! multiplied by the exponential function in

in the stochastic term, in order to understand this limit. weEd: (50) [and in Eq.(51)] will keep on appearing, let us

will discuss this further in the next section, where we will

also show that by reformulating the prescription derived in
this section, we can make direct contact with the fluctuating

dynamics of LIT discussed in Sec. Ill.

define the function

=

A7 texp{—t/7), if t=0

A=
® 0, if t<O.

(52
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Then Eq.(47) becomes many ways the simplest generalization of #téunction(i.e.,
Markovian case and this process can be made Markovian by

das(r,t) 1 (= qt’ )\(t_t,)&zas(r,t’) LY 93,:+1(1.Y)  enlarging the space froms to {as,a,, 10} In this case, the
at poCJ_x X, 09X, ! X, equation for the original variable has no stochastic term and
_ the equation for the newly introduced variable does have a

B 71/2aGM(r,t) stochastic term, which is now, howevet;function corre-
=(poToAC) T- (53 Jated. Both formulations have their advantages; the single

equation is useful in that the generalization from LIT is
Let us first note the presence of the memory kern@l ~ somewhat more obvious, whereas the two separate equations
—t'). In the limit 7;— 0\ (t)—\ 8(t), and therefore the left- are useful when one wishes to make use of the theory of
hand side of Eq(53) becomes Markovian processes. The fact that fluctuations in EIT in-
volve non-Markovian processes was noticed some time ago
[22], although there has been some dispute over some of the
statements that appear in this pafi28]. Our treatment dif-

. _ fers in that we concentrate on the explicit formulas, and
in agreement with the results of RéB]. For systems that stresses the role of the FDT.

obey the FDT, we would therefore expect that the stochastic We have already remarked on several occasions on the
term on the right-hand side of E(p3) is also nots-function  |imit 7;—0 of the single-equation formulation. At the end of
correlated, but has a temporal correlation related to the funcsec. IV we commented that the Markovian formulation ap-
tion A (t) [19,20. To investigate this point further, we notice peared to have some problems when this limit was taken. To
that the stochastic term involves the derivativeﬁq)c and so  show that these problems are not real we need to recall that
it is very natural to make the analogous transformation to Eqwhile ag is a scaled version of the physical fiélig for which

(35 and to define the scaling does not involvey, a,,, 10 is a scaled version of

q, for which the scaling does involve;. Therefore, while

all the 7, dependence in EJ53) is manifest, and we may
simply take the limit by considering the limit of the
N-function (52), in the two equation$47) and (48) we need

so that the right-hand side of EG3) is simplyFs. From Eq.  to make ther, dependence explicit by defining new quanti-

(51) it follows that sincef , , 10 is Gaussianly distributed with ti€s:

zero mean, theﬁaﬂ is also Gaussianly distributed with zero 2 ~ Uz

i i . a =77°A f =7, % ) (57)
mean. Moreover, a short calculation using the second expres w+10— T1 Au+100  Tp+105 717 Su+10
sion in Eq.(46) yields

Ja N Jdla Ja
R Y, A (54

gt poC ax, dx, Xy,

- J ~
F5(r1t)=(pOTOAC)ilIZEG,u(r!t)! (55)

The first transformation is dictated by E1): the field
kBTé)\ , ) A, +10has afinite limit as; — 0. The second transformation
Sy eXR—[t=t'[/m}8(r—r") s dictated by Eq(46): the correlation function of the sto-
5 ) ) chastic quantitféwm also has a finite limit as;—0. Mak-
=kgTod, N ([t=t'])S(r—r"). (56)  ing the substitution§57) in Eqs.(47) and (48) gives

(G (r, )G, (r' )=

71

This is exactly as we would expect on general grounds for a das oa aA
theory that obeys a FDT. The correlation function of the Oy, Ay, R0
stochastic terms involves the same function as appears in the Jt 2 IXy
memory kernel, but with the argument of the function being

the modulus of the argument of the memory ke, 2q. ~ and

Let us pause to summarize what has so far been demon-
strated in this section. We have shown that there are two &A“HO+A Y Jas
alternative formulations of the equation fag in the fluctu- 5 KA T2 0%,
ating dynamics of EIT:

(@ A single equation53) may be given. This equation All the 7, dependence is now manifest. Taking the—0
has a memory term and a stochastic t¢f%) that is expo- limit in Eq. (59) and substituting for4,, . 1o in Eq. (58) gives
nentially correlated in time and whose correlation function is
given by Eq.(56). 2 7

(b) Two Egs.(47) and(48) may be given. These have no ﬁ+Yl M8u+1 2 785 _ -Y, (75;”10, (60)
memory term, and only one has a stochastic term that is at Xy Iy I,y Xy,
o-function correlated, with a correlation function that is
given by the appropriate element @f,.. where

This situation is familiar in the theory of non-Markovian kT
stochastic processg2l]. In certain cases the non-Markovian ~ sy 2RBlo o L
process may be made Markovian by extending the space of<§"+1"(r’t)§”1"(r )= A Owdr=rot=ty.
variables. The case of exponentially-correlated noise is in (61)

0 (58)

+E,410- (59
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This is in agreement with Eq54), which was obtained as ~
the limit 7;—0 of the nonlocal equatiof63), and the sto- Fuia(r,@)=(poA
chastic term of LIT defined by Eq$35) and(37).
Another interesting interpretation may be found by writ- with
ing Eq. (53) in frequency space, that is, taking its Fourier ~ ~
transform in the time variable. Doing this one finds (Suu(r,w)S;,(r',0)) =2(2m)kgTo{2 Reu(w) X, p,

+Rel(w)d,,0,,0(r—r").

)‘1’2§§M(r,w), (68)

M) d?as(r,») da, 4 1(r, )
c 7 Y (69)

pO XM &X# &XM

~ This agrees with24] when 7= 75.

=F5(r, o). (62 Finally, from the Appendix we see that the equation for

a, does not involve any of the variabléﬁy, a,+10 OFAyg.
Therefore, it takes the same form as in LIT:

—iwag(r,w)—

Here\(w) is the Fourier transform of the function(t) de-
fined by Eq.(52):
aa'].(rvt) +Al/2(?a,u+l(r1t) _

o . A
)\(w) = J dt e""t)\(t)= m (63) at (9X’u
— - 1

0. (70)

VI. CONCLUSIONS

Since In this paper we have explored several aspects of fluctua-

tions in macroscopic systems where the thermodynamic in-
ertia is not negligible. We began by reviewing the situation
in LIT where the inertia is negligible, and showed how the
statistics of the fluctuations can be completely determined by
features of the macroscopic theory. While we followed Fox
and UhlenbecK6] for the first part of the derivation, we
adopted a more direct approach than they did by using the
Einstein formulaP s~ exps®S2kg, rather thard ¥dt, to de-
termine E[X.. This indirect determination of the matrik,
which is a feature of the Fox-Uhlenbeck treatment, is some-
(65) what unsatisfactory, but does circumvent the question of
whether velocity fluctuations should be includeds#s. For-

tunately, this issue has been clarified since the publication of
the paper by Fox and Uhlenbeck, and a cleaner derivation of
the FDT in this case is how possible.

It is natural to try to extend these ideas to EIT: linearizing
the theory about the equilibrium state and adding fluctuations

= 2\
fﬁ dt '\ (Jt])=2 Re\(w)= : (64)

’
—I—szi

we may write the correlation functiofs6) of theéﬂ(r,w) in
frequency space as

~— k(! — 2 )\5/“’ ’
<GM(I',(1))GV(I' ,w)>—2(27T)kBTOm5(r—r ).

Notice that the structure in which(t) appears in the
memory kernel and (|t|) in the correlation function of the
stochastic term—a structure that follows from the FDT of
Sec. IV—means that whene appeared in the deterministic
part of the equations of LIT (w) now appears, and wheke i o
appeared in the correlation function of the stochastic terms it €ach of the equations forv ,, T,7,,,q,,,7. In order to be
LIT, ReA(w) now appears. able to use the Einstein formula to determigl, it is nec-

It is now straightforward to extend this procedure to the®SSary, as in the LIT case, to assume that velocity is a ther-

equation fora,,, ;. By constructing an analogous set of ar- modynamic variable in the theory. It seems that this takes us

guments to those described above, we find that the generaﬁ-u'[SiOIe EIT as usually defing@], although occasionally it

, . D —“has been explicitly includefi25]. In any case, we find it
zathn of the LIT equat|on'fgaﬂ+1 is simply found by re difficult to understand how a consistent theory of fluctuations
placing the transport coefficienis and ¢ by

can be formulated unless velocity fluctuations are included.
For if they are not included, some of the diagonal entries of

(@)= : C )= 5 , (66) th(—_} E matri_x are zero and so the inverse doe; not exist
l-iwn l-iwT (within the linear theoryand the FDT(7) cannot be invoked.
When the velocity terms are included one finds that not only
respectively. That is, does the equation fax; have no stochastic terhich we
would expect, since it does not contain any dissipative con-
1 stantg, but the equations foa, ., andas have none either.
—lwa,q(r,o)- %{Zﬂ(w)xp,uov—‘r {(©)6,,0,,} On the other hand, stochastic terms do appear in the equa-
5 tions for 5M,,, a,+10, anday,, and these, unlike those in
d°a,41(r,®) Al,zé’al(f,w) Ly das(r,w) LIT, have correlation functions that do not involve spatial
IX,, OX,, X, toox, derivatives of thes function.
_ This structure is reminiscent of Langevin equations where
=F,1(r o). (67)  the noise is not white, but exponentially correlated. In these
cases it is possible to increase the number of variables in
The analogous equation to E@@4) is such a way that the equations for the original variables now
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have no noise, and those for the newly introduced variables/here, following the notation established in the main part of
have noise terms that are white, i.8-function correlated. In  the text, all partial derivatives with subscripts outside of the
the case of interest to us in this paper, fluctuating EIT correbrackets are evaluated in the equilibrium state. We now use
sponds to generalizing fluctuating LIT by extending thethe the standard thermodynamic relation

space of variables from the original fif@;,a,,,,as} by

adding the extra nine comprisir{gfiw,awlo,am} to make (a_u) =T &_p) —-p (A2)
14 in all. In this larger space the stochastic process that is | arf
fluctuating EIT(including the velocity is Markovian. In the
space of the original five variables it is, however, non-in Eg. (Al) and obtain
Markovian. ) , )
The introduction of new variables in a non-Markovian ui=[BTo—polvi+CTY, (A3)

stochastic process in order to render it Markovian, is often a

very useful device, since the theory of Markovian processe¥here

is usually so much easier. However, the non-Markovian rep-

resentation has some advantages, the principal one being that B= ( ‘79) (Ad)

it is easier to interpret physically. In Sec. V we showed in- '

stances of this in the present problem. For instance, in the

temporal representation, the nature of the-0 limit was  andC is given by Eq.(14).

much clearer than in the Markovian formulation. In the fre-  We now list the other thermodynamic relations we need

quency representation, the picture was even clearer, with th®e use in derivations in the main text. First, to derive the

real, frequency-independent transport coefficients of LIT betinearized form of Eq(9) we use

ing replaced by their complex, frequency-dependent counter-

parts. Other than this, the deterministic parts of the equations ap ap aT

were unchanged. The corresponding change to the correla- (ﬁ :A(W +B W) (AS)

tion function of the stochastic terms was a modification . . #

whereby the LIT transport coefficients were replaced by thevhereA is given by Eq.(14) andB by Eq. (A4).

real parts of the frequency-dependent ones. To prove the relatiori26), we first use Eq(A3), and then
We believe that the simple and intuitively appealing struc-the two relations

ture of fluctuating EIT discussed here will prove useful in the

many future applications of the theory. AT AT}
3 + [BTo—pol=0 (AB)
1% " Ju )
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We now move on to the derivation of the linearized equa-
(T:ions. Expanding about the equilibrium state

Grant No. GR/K79307A.J.M.) (v,0,.T. 74,0, 7)=(v9,0T5,0,0,0), and denoting vol-
ume and temperature fluctuationsibyandT,, respectively,
we obtain

APPENDIX
. . . . vy d(v1),

In this appendix we discuss the thermodynamic formulas PO T o (A8)
required in order to prove some of the results that appear in ©
the main text and we also linearize E¢8)—(10) and(38)—

(40) about the equilibrium state of the fluid they describe. p I(01) _ ZAE ‘9_T1: _ (768 T )

We begin by recalling some results from the theory of o ot OCax, T ax, o oox, R TE
classical equilibrium thermodynamics. These are required (A9)
since both the governing equatigh0) and the probability
distribution(25), are given in terms of the internal energy per dTy dvy), 99,

: : : poC——+ToB =-—£, (A10)
unit massu(r,t), and we wish to work with the temperature ot X, X,
field T(r,t), which has a more immediate physical interpre-
tation. We begin from the relatiofgoing over to the discrete o5 I(vy)

tation for the spatial variable T L T = —2uX ol (A11)
no 2 ot y3% M nrpo (9XU ’

- ’?_”> j (‘7_“) j dq,, Ty
Ul_(av TUl+ aT le, (Al) Tla—t‘Fq#:—)\E, (AlZ)
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or &(vl),u
oo T Tk,

(A13)

We now rewrite the linearized equatiof&8)—(A13) in
terms of the new physical field43) and(41). We find

day+(A)Y%9,a,,,=0, (A14)

B/T 1/2 w 1/2 o
1/2 0
a1t (A) aﬂa1+p0( C) d,a5+ Do -

(A15)

TO 1/2 A 1/2
R o R
(A16)

o
PoT2

o —1°
@y, t71a,,t 2

1/2
) X,uvpaapaa'+1zo!

(A17)

&Ma5= 0,

1/2
—_— Al8
TlPoC:) ( )

1
dy@y 410t T @410t

ata14+ Ta 1a14+

g 1/2
ﬁ) ﬂMaM+1=0, (Alg)

where with obvious notatios,, meansd/dx, andd; means
al at.
In order to make contact with the Langevin fof@), we

need to make the spatial dependence more explicit. There-

fore, we wish to write Eq(A14), for example, in the form

day(r,t)

t +fdr'Glb(r,r’)ab(r’,t)=0, b=1,...,14.

(A20)

Comparison with Eq(A14) shows that the onlyG,(r,r’")
that are nonzero are those with=2,3,4. In this case

Gi(ur1) (1 r)=(A)Y2,8(r—r"). (A21)

PHYSICAL REVIEW E64 046116

In a similar way we can determine all of the otf@&y.(r,r’).
From Egs.(A14)—(A19), it is immediately apparent that

Gpo(r 1) =Gep(r,r'), (A22)

or in the discrete form introduced in Sec.G)<=GI%. In
fact, in terms of the symmetric and antisymmetric forms de-
fined by Egs.(19) and (20), we further note thaal,= Al
and S.=SX . In continuous notation this reads

Apc(r,r")=Acp(r,r');  Spelr,r’)=Sep(r,r').

(A23)

Therefore, we need to only list thg,. for b<<c and theS,.
for b=<c; Eq. (A23) gives the others once these are known.
Notice also that Eqs(20) and (A23) taken together mean
thatAp(r,r’) andS,(r,r’) are antisymmetric and symmet-
ric, respectively, under the interchange:r’.

The explicit forms are as follows. The only nonzesg.
are

§

oo (1T ) =75 X 0 ST =17),

nvpo

S(/L+10)(V+1O)(rlr,): T]Tlts,uvé‘(r -r ,)1

Sidr,r)=15te(r—r'). (A24)
The only nonzerd\,. with b<<c are
A ’ _A1/2 J S(r—r'
1) r)= E (r—r’,
L o\ 2 g ’
Au+1ys(r,r )_P_o < E&(r—r ),
w12 P
A(P+1)vuv(rvr,):(ﬁ> X/wprrﬁgts(r—r’)y
g 1/2 J
A(#+1)14(r,r ):(POTO) E&r—l’ ),
112
As(u+10)T,T ):<71P0C) @5(r—r ). (A25)
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